Home
Class 14
MATHS
The value of ((a+b)^2)/((a^2-b^2)) is...

The value of `((a+b)^2)/((a^2-b^2))` is `(a b)/(a+b)` (b) `(2a b)/(a-b)` (c) `(a+b)/(a-b)` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ((a+b)^(2))/((b-c)(c-a))+((b+c)^(2))/((a-b)(c-a))+((c+a)^(2))/((a-b)(b-c))

If the first, second and last term of an A.P. are a ,\ b and 2a respectively, its sum is (a b)/(2(b-a)) (b) (a b)/(b-a) (c) (3a b)/(2(b-a)) (d) none of these

Find the value of ( a^4 - a^2*b^2 ) ÷ a^2 is ( a ) x^2( a - b )^2 ( b ) ( a + b )( a - b ) ( c ) b ( a - b ) ( d ) a ( a - b )

((a+b)^(2))/((b-c)(c-a))+((b+c)^(2))/((a-b)(c-a))+((c+a)^(2))/((a-b)(b-c))

If a=bc and c=a-b, then the value of a is b^(2)-1( b )(b^(2))/(b-1) (c) (b)/(b-1) (d) None of these

The determinant |{:(b^2-ab, b-c, bc-ac), (a b-a^2, a-b, b^2-ab) ,(b c-c a, c-a, a b-a^2):}| equals a b c\ (b-c)(c-a)(a-b) (b) (b-c)(c-a)(a-b) (c) (a+b+c)(b-c)(c-a)(a-b) (d) none of these

If a+b+c=0 , find the value of (a^2)/((a^2-b c))+(b^2)/((b^2-c a))+(c^2)/((c^2-a b)) (a) 0 (b) 1 (c) 2 (d) 4

If : sin theta = (a^(2)-b^(2))/(a^(2)+b^(2)), "then" : cot theta= A) (4a^(2)b^(2))/(a^(2) -b^(2)) B) (a^(2) + b^(2))/(a^(2) - b^(2)) C) (4a^(2)b^(2))/(a^(2) + b^(2)) D)none of these.

Find the value of ( a^2/b^2 + b^2/a^2 ) is ( a ) ( a/b + b/a )^2 - 2 ( b ) ( a/b + b/a )^2 + 2 ( c ) ( a/b + b/a )^2 + 4 ( d ) ( a/b + b/a )^2 - 4