Home
Class 14
MATHS
The simplest value of 1/(1xx2)+1/(2xx...

The simplest value of `1/(1xx2)+1/(2xx3)+1/(3xx4)+\ ddot+1/(9xx10)` is `1/(10)` (b) `9/(10)` (c) `1` (d) `10`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1)/(1xx4)+(1)/(4xx7)+(1)/(7xx10)+…(1)/(16xx19) is

The value of 3xx 9^(-3//2) xx 9^(1//2) is

Find the value of (1)/(2xx3)+(1)/(3xx4)+(1)/(4xx5)+(1)/(5xx6)+backslash+(1)/(9xx10)

((1)/(1xx4)+(1)/(4xx7)+(1)/(7xx10)+(1)/(10xx13)+(1)/(13xx16))=?

If A= 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10) ...... upto 20 terms, then what is the value of A? यदि 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10).....20 पदों तक हो, तो A का मान क्या है?