Home
Class 14
MATHS
When simplified, the sum 1/2+1/6+1/(1...

When simplified, the sum `1/2+1/6+1/(12)+1/(20)+1/(30)+\ ddot+1/(n(n+1))` is equal to `1/n` (b) `1/(n+1)` (c) `n/(n+1)` (d) `(2(n-1))/n`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series sum_(n=1)^oo(n^2+6n+10)/((2n+1)!) is equal to

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

sum_(n=1)^(99) n! (n^2 + n+1) is equal to :

The value of sum_(r=1)^(n)(-1)^(r+1)(^nCr)/(r+1) is equal to a.-(1)/(n+1) b.(1)/(n) c.(1)/(n+1) d.(n)/(n+1)

If N=1/2+1/6+1/12+1/20+1/30+………+1/156 what is the value of N?

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to