Home
Class 12
MATHS
lim(x->0)(2 \ int0^(cosx) \ cos^(- 1)...

`lim_(x->0)(2 \ int_0^(cosx) \ cos^(- 1)t \ dt)/(2x-sin2x)` is equal to (i) `0` (ii)`1/2` (iii)`-1/2` (iv)`2/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) (2 int_(0)^(cosx) cos^(-1) t dt)/( 2x -sin 2x) is equal to

lim_(x rarr0)(2int_(0)^(cos x)cos^(-1)tdt)/(2x-sin2x) is equal to (i) 0 (ii) (1)/(2)( iiii) -(1)/(2)( iv) (2)/(3)

The value of Lim_(x->0^+)(int_1^cosx(cos^-1t)dt)/(2x-sin(2x)) is equal to

The value of lim_(x rarr0^(+))(int_(1)^(cos x)(cos^(-1)t)dt)/(2x-sin(2x)) is equal to

lim_( x to 0) ( int_(0)^(x^(2)) cos^(2)t" "dt)/(x sin x) = ...

The value of lim_(x to 0)(int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is equal to -

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim _( x to 0^(+))(int _(1)^(cos x) (cos ^(-1) t )dt)/(2x - sin 2x) is equal to: