Home
Class 14
MATHS
If a*b*c means (a+b)/c for all number...

If `a*b*c` means `(a+b)/c` for all numbers except 0, then `(a*b*c)*a*b` is equal to (a) 0 (b) 1 (c) `(a+b+c)/(a b)` (d) `(a+b+a c)/(b c)` (e) `(a b+b c+c a)/(a+b+c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c gt 0 then (a)/( a + b + c) = (b)/( a + b + c) = (c )/(a + b + c) = ?

If a+b+c= 0 , then ((a+b)/(c ) + (b+c)/(a) + (c+ a)/(b)) ((c )/(a+b) + (b)/(a+c) + (a)/(b+c)) = ?

If a,b,c gt 0, then (a )/(2a + b +c ) = (b)/(a + 2b +c)= (c )/(a +b + 2c) = ?

If a+b+c= 0 , then (c )/(a+b) + (b)/(a+c) + (a)/(b + c) = ?

If a + b + c = 0 , then find the value of ( ( a + b ) / c + ( b + c )/a + ( c + a ) / b ) times ( a /( b + c ) + b /( c + a ) + c /( a + b ) ) is :

If a+b+c= 0 , then (a+b)/(c ) + (b+c)/(a) + (c +a)/(b) = ?

If a,b,c gt 0, then (a )/(b +c) = (b)/( c +a) = (a)/(a +b) = ?

If a+b+c= 0, then the value of ((a+b)/c + (b+c)/a + (c+a)/b) ((a)/(b+c) + b/(c+a) + c/(a+b)) is :

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1