Home
Class 14
MATHS
The value of (x^2-(y-z)^2)/((x+z)^2-y...

The value of `(x^2-(y-z)^2)/((x+z)^2-y^2)+(y^2-(x-z)^2)/((x+y)^2-z^2)+(z^2-(x-y)^2)/((y+z)^2-x^2)` is `-1` (b) 0 (c) 1 (d) None of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

"The value of "(x^(2))/((x-y)(x-z))+(y^(2))/((y-z)(y-x))+(z^(2))/((z-x)(z-y))" is : "

The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y^(2)-1/z^(2))(1/z^(2)-1/x^(2))) is

Prove that |x^2x^2-(y-z)^2y z y^2y^2-(z-x)^2z x z^2z^2-(x-y)^2x y|=(x-y)(y-z)(z-x)(x+y+z)(x^2+y^2+z^2)dot

simplify- (((x+y)^2-xy)/((y-z)(z-x)))+(((y+z)^2-yz)/((z-x)(x-y)))+(((z+x)^2-zx)/((x-y)(y-z)))

(y^(2)+yz+z^(2))/((x-y)(x-z))+(z^(2)+zx+x^(2))/((y-z)(y-x))+(x^(2)+xy+y^(2))/((z-x)(z-y))

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)

If log x log y log z=(y-z)(z-x)(x-y) then a )x^(y)*y^(z)*z^(x)=1 b) x^(2)y^(2)z^(2)=1c)root(z)(x)*root(y)(y)*root(z)(z)1=d) None of these