Home
Class 14
MATHS
If (x^4+1/(x^4))=322 , the value of (...

If `(x^4+1/(x^4))=322` , the value of `(x-1/x)` is (a) 4 (b) `3sqrt(2)` (c) 6 (d) 8

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x-(1)/(x))=2, then the value of (x^(4)+(1)/(x^(4))) is (a) 4(b)8(c)12 (d) 34

if x^(4)+(1)/(x^(4))=322 then find the value of x^(3)-(1)/(x^(3))

If (x+(1)/(x))=3, then the value of (x^(6)+(1)/(x^(6))) is (a) 322( b) 364(c)414(d)927

If |(x , 1),(1,x)| = |(2 , 0),(8,4)| then value of x is: (a) pm 3 (b) pm2 (c) pm4 (d) 0

If x=(7-4sqrt(3)), then the value of (x+(1)/(x)) is 3sqrt(3)( b 8sqrt(3)(c)14(d)14+8sqrt(3)

If x^(4)+(1)/(x^(4))=623, then x+(1)/(x)=27(b)25 (c) 3sqrt(3)(d)-3sqrt(3)

If x-(1)/(x)=1, then the value of x^(3)-(1)/(x^(3)) is equal to (a)2(b)3(c)4(d)8

If f(x)=(1+x)(3+x^(2))^(1/2)(9+x^(3))^(1/3) then f'(-1) is equal to 0( b) 2sqrt(2)(c)4(d)6