Home
Class 12
MATHS
int tanx/(tan^2x+tanx+1) dx = x - k/sqrt...

`int tanx/(tan^2x+tanx+1) dx = x - k/sqrtA tan^(-1) ((ktanx +1)/sqrtA) + C`, then the ordered pir of `(K,A)` is equal to : (A) `(2,1)` (B) `(-2,3)` (C) `(2,3)` (D) `(-2,1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

int (tanx)/(1+tan^(2)x)dx=

int sqrt(tanx) (1+tan^2x)dx

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

int (1-tanx)/(1+tan x)dx=

int(1+tan^(2)x)/(1+tanx)dx=