Answer
Step by step text solution for int tanx/(tan^2x+tanx+1) dx = x - k/sqrtA tan^(-1) ((ktanx +1)/sqrtA) + C, then the ordered pir of (K,A) is equal to : (A) (2,1) (B) (-2,3) (C) (2,3) (D) (-2,1) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.
|
Similar Questions
Explore conceptually related problems
Knowledge Check
A
B
C
D
Submit
A
B
C
D
Submit
A
B
C
D
Submit
Similar Questions
Explore conceptually related problems
Recommended Questions
- int tanx/(tan^2x+tanx+1) dx = x - k/sqrtA tan^(-1) ((ktanx +1)/sqrtA) ...
08:27
|
Playing Now - int(tan x)/(tan^(2)x+tan x+1)dx=x-(k)/(sqrt(A))tan^(-1)((k tan x+1)/(s...
08:27
|
Play - If int(1)/(cos^(3)xsqrt(2 sin2x))dx=(tanx)^(A)+C(tanx)^(B)+k, where k...
08:40
|
Play - The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...
04:05
|
Play - int (tanx)/(1+tan^(2)x)dx=
02:06
|
Play - int (1-tanx)/(1+tan x)dx=
02:08
|
Play - (d)/(dx) {Tan ^(-1) ""(sqrtx + sqrta)/(1- sqrtax)}=
03:21
|
Play - If int(1)/(4sin^(2)x+4sin x cos x+5cos^(2)x)dx=A tan^(-1)(B tanx+C)+k,...
04:40
|
Play - Evaluate: inte^x(1+tanx+tan^2x)dx
02:14
|
Play