Home
Class 12
MATHS
int tanx/(tan^2x+tanx+1) dx = x - k/sqrt...

`int tanx/(tan^2x+tanx+1) dx = x - k/sqrtA tan^(-1) ((ktanx +1)/sqrtA) + C`, then the ordered pir of `(K,A)` is equal to : (A) `(2,1)` (B) `(-2,3)` (C) `(2,3)` (D) `(-2,1)`

Answer

Step by step text solution for int tanx/(tan^2x+tanx+1) dx = x - k/sqrtA tan^(-1) ((ktanx +1)/sqrtA) + C, then the ordered pir of (K,A) is equal to : (A) (2,1) (B) (-2,3) (C) (2,3) (D) (-2,1) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

int sqrt(tanx) (1+tan^2x)dx

Knowledge Check

  • If inttanx/(1+tanx+tan^(2)x)dx =x-2/sqrt(A)tan^(-1)((2tanx+1)/sqrt(A))+c , then A=

    A
    2
    B
    3
    C
    4
    D
    5
  • int (tanx)/(1+tan^(2)x)dx=

    A
    `(1)/(2)cos 2x+c`
    B
    `-(1)/(2)cos 2x+c`
    C
    `(1)/(4)cos 2x+c`
    D
    `-(1)/(4)cos 2x+c`
  • int (1-tanx)/(1+tan x)dx=

    A
    `log |cosx-sin x|+c`
    B
    `log |cosx+sin x|+c`
    C
    `-log |(cosx)|+c`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

    The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

    The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

    int(1+tan^(2)x)/(1+tanx)dx=

    If int (tan x )/( 1 + tan x + tan ^(2) x ) dx = x - ( K)/(sqrtA) tan ^(-1) (( K tan x +1)/( sqrtA)) + C, (C is a constant of integration), then the ordered pari (K, A) is equal to