Home
Class 12
MATHS
" 13"lim(n rarr oo){log((n-1))(n)log(n)(...

" 13"lim_(n rarr oo){log_((n-1))(n)log_(n)(n+1)log_(n+1)(n+2)...log_(n^(k)-1)(n^(k))}" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)[log_(n-1)(n)log_n(n+1)*log_(n+1)(n+2).....log_(n^k-1) (n^k)] is equal to :

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

N=log_(2)5*log_((1)/(6))2*log_(3)((1)/(6)),then3^(N) is equal to

sum_(n=0)^(oo)((log_(e)x)^(n))/(n!) is equal to

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

lim_(n rarr oo) ((sin(n))/(n^(2))+log((en+1)/(n+e))) ^(n) is equal to