Home
Class 12
MATHS
[" If the line "lx+my=1" is a "],[" norm...

[" If the line "lx+my=1" is a "],[" normal to the "],[" hyperbola "(x^(2))/(a^(2))-(y^(2))/(b^(2))=1],[" then "(a^(2))/(l^(2))-(b^(2))/(m^(2))" is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the l x+ my=1 is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then shown that (a^(2))/(l^(2))-(b^(2))/(m^(2))=(a^(2)+b^(2))^(2)

If the l x+ my=1 is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then shown that (a^(2))/(l^(2))-(b^(2))/(m^(2))=(a^(2)+b^(2))^(2)

If lx+ my = 1 is a normal to the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1, "then" a^(2) m^(2) - b^(2) l^(2) =

If the line lx+my=1 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then (a^(2))/(l^(2))+(b^(2))/(m^(2))=

If the line lx+my+n=0 s a tangent to the hyperboal (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then show that a^(2)l^(2)-b^(2)m^(2)=n^(2)

If the straight line lx+my=n is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 show that (a^(2))/(l^(2))-(b^(2))/(m^(2))=((a^(2)+b^(2))^(2))/(n^(2)) .

The pole of the line lx+my+n=0 with respect to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

The pole of the line lx+my+n=0 with respect to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if