Home
Class 12
MATHS
int(0)^(oo)(xdx)/((1+x)(1+x^(2)))=(pi)/(...

int_(0)^(oo)(xdx)/((1+x)(1+x^(2)))=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx =(pi)/(4)

Prove that: int_(0)^(oo) (x)/((1+x)(1+x)^(2))dx =(pi)/(4)

int_(0)^(oo)(xdx)/((1+x)(1+x^(2))) is equal to (A)(pi)/(4) (B) (pi)/(2)(C)pi(D) none of thesel

The value of int_(0)^(oo)(xdx)/((1+x)(1+x^(2))) is equal to

Find the value of int_(0)^(oo)(xdx)/((1+x)(1+x^(2))) equals to

int_(0)^( pi)(xdx)/(1+sin x)dx

The value of int_(0)^(oo)(dx)/(1+x^(4)) is (a) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x) (b) (pi)/(2sqrt(2))( c) same as that of int_(0)^(oo)(x^(2)+1dx)/(1+x^(4))(d)(pi)/(sqrt(2))

int_(0)^( pi)(xdx)/(1+cos^(2)x)=(pi^(2))/(2sqrt(2))