Home
Class 11
MATHS
" Prove that "|[ax,by,cz],[x^(2),y^(2),z...

" Prove that "|[ax,by,cz],[x^(2),y^(2),z^(2)],[1,1,1]|=|[a,b,c],[x,y,z],[yz,xz,xy]|

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |[ax,by,cz], [x^2,y^2,z^2], [1,1,1]| = |[a,b,c],[x,y,z],[yz,zx,yx]|

Without expanding the determinant , prove that |{:(ax,by,cz),(x^2,y^2,z^2),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}|

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,c,,c),(x,,y,,z),(yz,,xz,,xy):}|

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,c,,c),(x,,y,,z),(yz,,xz,,xy):}|

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

Prove that |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]|= 0