Home
Class 10
MATHS
" 31.The greatest value of "f(x)=int(1)^...

" 31.The greatest value of "f(x)=int_(1)^(1)|t|dt" on the interval "[-(1)/(2)*(1)/(2)]" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest value of f(x)=int_(1)^(x)|t||dt on the interval [-(1)/(2),(1)/(2)]:

The greatest value of f(x)=int_(1)^(x)|t|dt on the interval [-(1)/(2), (1)/(2)] is :

The greater value of F(x)=int_(1)^(x) |t|dt on the interval [-1//2,1//2] , is

The greater value of (x) =int_(-1//2)^(x) |t|dt on the interval [-1//2,1//2] , is

The greater value of (x) =int_(-1//2)^(x) |t|dt on the interval [-1//2,1//2] , is

The range of the function f(x)=int_(1)^(x)|t|dt , x in[(-1)/(2),(1)/(2)] is

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)=1+(1)/(x)int_(1)^(x)f(t)dt, then the value of (e^(-1)) is

If f(x) = int_1^x (1)/(2 + t^4) dt ,then