Home
Class 12
MATHS
If B ,\ C are n rowed square matrices ...

If `B ,\ C` are `n` rowed square matrices and if `A=B+C` , `B C=C B` , `C^2=O` , then show that for every `n in N` , `A^(n+1)=B^n(B+(n+1)C)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If B,C are n rowed square matrices and if A=B+C,BC=CB,C^(2)=O, then show that for every n in N,A^(n+1)=B^(n)(B+(n+1)C)

If B, C are a rowed squre matrices and if A=B+C, BC= CB, C^2=0, then show that A^(n-)=B^n(B+(n+1)C)AA^nin N.

If B,C are square matrices of order n and if A=B+C,BC=CB,C^(2)=0 then which of the following is true for any positive integer N

If B, C are square matrices of order n and if A = B + C , BC = CB , C^2=0 then which of the following is true for any positive integer N

If Aa n dB are square matrices of the same order and A is non-singular, then for a positive integer n ,(A^(-1)B A)^n is equal to A^(-n)B^n A^n b. A^n B^n A^(-n) c. A^(-1)B^n A^ d. n(A^(-1)B^A)^

If Aa n dB are square matrices of the same order and A is non-singular, then for a positive integer n ,(A^(-1)B A)^n is equal to A^(-n)B^n A^n b. A^n B^n A^(-n) c. A^(-1)B^n A^ d. n(A^(-1)B^A)^

If A and B are square matrices of the same order and A is non-singular,then for a positive integer n,(A^(-1)BA)^(n) is equal to A^(-n)B^(n)A^(n) b.A^(n)B^(n)A^(-n) c.A^(-1)B^(n)A d.n(A^(-1)BA)

If A=diag[a,b,c] then show that A^(n)=diag[a^(n),b^(n),c^(n)] for all n in N

If there are three square matrix A, B, C of same order satisfying the equation A^2=A^-1 and B=A^(2^n) and C=A^(2^((n-2)) , then prove that det .(B-C) = 0, n in N .

If there are three square matrix A, B, C of same order satisfying the equation A^2=A^-1 and B=A^(2^n) and C=A^(2^((n-2)) , then prove that det .(B-C) = 0, n in N .