Home
Class 12
MATHS
The value of lim(xrarr0) (int(0)^(x)tdt)...

The value of `lim_(xrarr0) (int_(0)^(x)tdt)/(xtan (x+pi))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)|x|/x is

lim_ (x rarr0) (int_ (0) ^ (x) tdt) / (x tan (x + pi))

The value of lim_(x rarr 0) (int_0^(x^2)sec^2tdt)/(x sinx) is :

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(xrarr0)(int_0^(x^2) cos(t^2)dt)/(xsinx) is

The value of lim_(xrarr0)(sinx)/x is ……