Home
Class 8
MATHS
7x^(3)+8y^(3)-(4x+3y)(16x^(2)-12xy+9y^(2...

7x^(3)+8y^(3)-(4x+3y)(16x^(2)-12xy+9y^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify the following: 7x^3+8y^3-(4x+3y)(16 x^2-12 x y+9y^2)

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

Factorize: x^(3)+8y^(3)+6x^(2)y+12xy^(2)

Add : 5x^(2)-2xy +8y^(2), 3xy -7y^(2)-2x^(2) and y^(2)+xy-4x^(2) .

Subtract: (i) 5a + 7b - 2c from 3a - 7b + 4c (ii) a - 2b - 3c from -2a + 5b - 4c (iii) 5x^(2) - 3xy + y^(2) from 7x^(2) - 2xy - 4y^(2) (iv) 6x^(3) - 7x^(2) + 5x - 3 from 4 - 5x + 6x^(2) - 8x^(3) (v) x^(3) + 2x^(2) y + 6xy^(2) - y^(3) from y^(3) - 3xy^(2) - 4x^(2) (vi) -11 x^(2) y^(2) + 7xy - 6 from 9x^(2) y^(2) - 6xy + 9 (vii) -2a + b + 6d from 5a - 2b - 3c

Find co - ordinates of foci, water length of major axis and minor aixs, eccentricity and length of latus rectum of following ellipse. Length of latus rectum of following ellipse. (1) 16x^(2) + 9y^(2) = 1 (2) 3x^(2) + 2y^(2) = 6 (3) 4x^(2) + 9y^(2) = 1 (4) (x^(2))/(49) + (y^(2))/(16) = 1 (5) 9x^(2) + 25y^(2) = 225 (6) 7x^(2) + 10y^(2) = 70 (7) 16x^(2) + 5y^(2) = 80

Add: (i) 3x, 7x (ii) 7y, -9y (iii) 2xy, 5xy, -xy (iv) 3x, 2y (v) 2x^(2), -3x^(2), 7x^(2) (vi) 7xyz, -5xyz, 9xyz, - 8xyz (vii) 6a^(3) , - 4a^(3), 10 a^(3), - 8a^(3) (viii) x^(2) - a^(2), -5x^(2) + 2a^(2), -4x^(2) + 4a^(2)

List of the like terms in the following expression. (i) 4x^(4),-7x^(3),8x^(2),12x^(3),-9x^(4),-5x,4x^(3),12x^(2) (ii) 5xy,-3x^(2)y,2xy^(3),-2x^(2)y^(2),5x^(2)y,-3xy,6x^(2)y^(2)

Subtract 5x^(2)-4y^(2)+6y-3 from 7x^(2)-4xy+8y^(2)+5x-3y