Home
Class 9
MATHS
" If "min(x^(2)+(a-b)x+(1-a-b))>max(-x^(...

" If "min(x^(2)+(a-b)x+(1-a-b))>max(-x^(2)+(a+b)x-(1+a+b))" ,then "=

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of ordered pairs (a,b) where a,b are integers satisfying the inequality min (x ^(2) +(a-b) x + (1-a-b)) gtmax (-x ^(2) +(a+b)x-(1+a+b)AA x in R, is :

The number of ordered pairs (a,b) where a,b are integers satisfying the inequality min (x ^(2) +(a-b) x + (1-a-b)) gtmax (-x ^(2) +(a+b)x-(1+a+b)AA x in R, is :

If (x^(2))/((x-a)(x-b))=1+(a^(2))/((a-b)(x-a))+(B)/((x-b)) , then B is _________.

If min(2x^(2)-ax+2)>max(b-1+2x-x^(2))* Then,roots of the equation 2x^(2)+ax+(2-b)=0 are

Show : ( x^(a^2)/ x^( b^2 ) )^ (1/( a+b)) times ( x^(b^2)/ x^( c^2 )) ^ ( 1/( b+c )) times ( x^(c^2)/ x^( a^2 ) )^ (1/( c+a)) = 1

If non-zero real number b and c are such that min f(x) gt max g(x) where f(x) =x^(2) + 2bx + 2c^(2) and g(x) = -x^(2) - 2cx + b^(2) (x in R) " then " |(c )/(b)| lies in the interval

If (1+x+x^(2))^(n)=b_(0)+b_(1)x+b_(2)x^(2)+….+b_(2n)x^(2n) then prove that If n=37, b_(1)-b_(3)+b_(5)-b_(7)+ …b_(2n-1)=1

Solve: (a+x-2b)/(2a-b)-(a-2b)/x=1 .