Home
Class 12
MATHS
lim(x rarr2)(2x^(n)-2^(n))/(x-2)=8...

lim_(x rarr2)(2x^(n)-2^(n))/(x-2)=8

Promotional Banner

Similar Questions

Explore conceptually related problems

find n in N, if lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80

lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80 amd m in N, then find the value of n

If lim_(x rarr 2) [(x^(n)-2^(n))/(x-2)]=32 , then find the value of n.

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

If lim_(x rarr 2) (x^n-2^n)/(x-2)=80 and if n is a positive integer, find n.

Evaluate lim_(x rarr2)(x^(3)-8)/(x-2)

lim_(x rarr2)((e^(x)-e^(2))/(x-2))

lim_(x rarr2)(x^(2)-2x)/(x^(3)-8)

lim_(x rarr2)(f(x)-f(2))/(x-2)=

lim_(x rarr2)(x^(3)-8)/(x^(2)-4)