Home
Class 11
MATHS
" 18."int[xf(x)+f(x)]dx=..........

" 18."int[xf(x)+f(x)]dx=.......

Promotional Banner

Similar Questions

Explore conceptually related problems

int[f(x)+xf'(x)]dx=

int[f(x)+x.f'(x)]dx=

int [f(x)+xf'(x)]dx =

Evaluation of definite integrals by subsitiution and properties of its : If f(x)=f(2-x) then int_(0.5)^(1.5)xf(x)dx=........

int[f(x)+xf'(x)]dx=xf(x)+c

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: inte^x x^x(2+logx)= (A) e^x x^xlogx+C (B) e^x+x^x+C (C) e^x x(logx)^2+C (D) e^x.x^x+C

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: inte^x x^x(2+logx)= (A) e^x x^xlogx+C (B) e^x+x^x+C (C) e^x x(logx)^2+C (D) e^x.x^x+C

If f(a+b-x)=f(x)," then "int_(a)^(b)xf(x)dx=

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is