Home
Class 11
MATHS
Let f(x)=(lim)(h->0)(("sin"(x+h))^(1n(x+...

Let `f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot` Then `f(pi/2)` equal to (a)0 (b) equal to 1 (c)In `pi/2` (d) non-existent

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(lim)_(h rarr0)((sin(x+h))^(1n(x+h))-(sin x)^(1nx))/(h) Then f((pi)/(2)) equal to (a)0(b) equal to 1(c)In(pi)/(2) (d) non-existent

Let f(x)=lT_(h rarr0)(sin(x+h)^(In(x+h))-(sin x)^(In x))/(h) then f((pi)/(2)) is

Q.Let f(x)=lim_(x rarr0)(((sin(x+h))^(ln(x+h))-(sin x)^(ln x))/(h)) then the value of f((pi)/(2)) is

D*f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) If f(x)=x ln x then D*f(x) at x=e equals

(lim)_(xrarr0)(sin(picos^2x)/(x^2)) is equal to (a) -pi (b) pi (c) pi/2 (d) 1

(lim)_(xrarr0)(sin(picos^2x)/(x^2)) is equal to (a) -pi (b) pi (c) pi/2 (d) 1

Let f(x)=(sqrt(1+sinx)-sqrt(1-sinx))/(tanx) , x ne 0 Then lim_(x to 0) f(x) is equal to

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=-(3 pi^(2))/(4) then lim_(x rarr-pi)(f(x))/(sin(sin x)) is equal to (a)0( b) pi (c) 2 pi (d) none of these

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these