Home
Class 12
MATHS
" Prove that "tan^(-1)((cos x)/(1+sin x)...

" Prove that "tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((cosx)/(1+sin x)) =(pi)/(4)-(x)/(2), x in (-(pi)/(2), (pi)/(2)) .

solve: tan^(-1) ((cos x)/(1-sin x)) = ((pi)/(4)+(x)/(2)) , (-3 pi)/(2)ltxlt(pi)/(2)

Prove that (cos x)/((1- sin x)) = tan .((pi)/(4) + (x)/(2))

prove that cot^(-1)[(cos x+sin x)/(cos x-sin x)]=(pi)/(4)-x

Prove that : cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2)) (ii) Prove that : tan^(-1)((cosx + sin x)/(cosx - sin x)) = (pi)/(4)+ x

prove that tan^(-1)((cos x)/(1-sin x))-cot^(-1)((sqrt(1+cos x))/(sqrt(1-cos x)))=(pi)/(4),x varepsilon(0,(pi)/(2))

Prove that , tan^(-1)((2 sin 2x)/(1+2 cos 2x))-(1)/(2)sin^(-1)((3 sin 2x)/(5+4 cos 2x))=x .

Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

Express 'tan ^(^^)(-1)((cos x)/(1-sin x)),-pi/2

Prove that (1- sin 2x)/(1+ sin 2x) = tan^(2) .((pi)/(4)-x)