Home
Class 11
MATHS
[" The two circles "x^(2)+y^(2)=ax" and ...

[" The two circles "x^(2)+y^(2)=ax" and "],[x^(2)+y^(2)=c^(2)(c>0)" touch each other if "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The two circles x^(2)+y^(2)=ax and x^(2)+y^(2)=c^(2)(c gt 0) touch each other, if |(c )/(a )| is equal to

The two circles x^(2)+y^(2)=ax and x^(2)+y^(2)=c^(2)(c gt 0) touch each other, if |(c )/(a )| is equal to

The two circles x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0) touch each other if

The two circles x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0) touch each other if

The two circles x^2+""y^2=""a x and x^2+""y^2=""c^2(c"">""0) touch each other if : (1) 2|a|""=""c (2) |a|""=""c (3) a""=""2c (4) |a|""=""2c

The two circles x^2+""y^2=""a x and x^2+""y^2=""c^2(c"">""0) touch each other if : (1) 2|a|""=""c " " (2) |a|""=""c " " (3) a""=""2c " " (4) |a|""=""2c

If the circles x^(2)+y^(2)+2ax+b=0 and x^(2)+y^(2)+2cx+b=0 touch each other (a!=c)

If two circles x^(2)+y^(2)+c^(2)=2ax and x^(2)+y^(2)+c^(2)-2by=0 touch each other externally , then prove that (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))