Home
Class 12
MATHS
From the point P(2+3sqrt2costheta, 3 +3s...

From the point `P(2+3sqrt2costheta, 3 +3sqrt2sintheta), 0 < theta< 2pi` , tangents are draw to the circle `x^2+y^2-4x-6y+4=0`, then the angle between then is

Promotional Banner

Similar Questions

Explore conceptually related problems

(2+sqrt(3))costheta =1 - sintheta

sintheta - sqrt(3)costheta =1

Let P = [theta : sintheta – costheta = sqrt2 costheta) andQ= {theta : sintheta + costheta = sqrt2 sintheta} be two sets. Then:

The parametric representation of a point on the ellipse whose foci are (3,0) and (-1,0) and eccentricity 2//3 , is a) (1+3costheta,sqrt(3)sintheta) b) (1+3costheta,5sintheta) c) (1+3costheta,1+sqrt(5)sintheta) d) (1+3costheta,sqrt(5)sintheta)

The value of the integral int_(0)^(pi//2)(3sqrt(costheta))/((sqrt(costheta)+sqrt(sintheta))^5)d theta equals ............

The value of the integral int_(0)^(pi//2)(3sqrt(costheta))/((sqrt(costheta)+sqrt(sintheta))^5)d theta equals ............

Let P = [theta : sintheta – costheta = sqrt2 costheta) andQ= {theta : sintheta + costheta = 12 sintheta} be two sets. Then:

Let P = [theta : sintheta – costheta = sqrt2 costheta) andQ= {theta : sintheta + costheta = 12 sintheta} be two sets. Then:

Find the general solution of the equation, (sqrt(3)-1)costheta+(sqrt(3)+1)sintheta=2

Find the general solution of the equation (sqrt(3)-1)costheta+(sqrt(3)+1)sintheta=2