Home
Class 12
MATHS
Find the following function is differ...

Find the following function is differentiable at a given point or not? `f(x)={x(e^((1//x))-e^((-1//x)))/(e^((1//x))+e^((-1//x))),\ x!=0 0,\ x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

f(x) = x [(e^(1//x) - e^(-1//x))/(e^(1//x) + e^(-1//x))] , (x ne 0)= 0 then f(x) is

Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1 then-

Compute f'(0^(+)) if f(x)=(x(e^(1/x)-1))/(e^(1/x)+1) :

Discuss the continuity and differentiability of the function f(x)={(|x|(3e^((1)/(2e))+4))/(2-e^((1)/(|x|))),x!=0x=0atx=0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0