Home
Class 12
MATHS
Let a ,b ,c be real numbers with a^2+...

Let `a ,b ,c` be real numbers with `a^2+b^2+c^2=1.` Show that the equation `|a x-b y-c b x-a y c x+a b x+a y-a x+b y-cc y+b c x+a c y+b-a x-b y+c|=0` represents a straight line.

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorize: a x+b x+a y+b y , a x^2+b y^2+b x^2+a y^2 , a^2+b c+a b+a c , a x-a y+b x-b y

Prove that: |a b a x+b y b c b x+c y a x+b y b x+c y0|=(b^2-a c)(a x^2+2b x y+c y^2) .

If x+y+z=0 prove that |a x b y c z c y a z b x b z c x a y|=x y z|a b cc a bb c a|

Factorize: a x+b x+a y+b y +a x^2+b y^2+b x^2+a y^2 a^2+b c+a b+a c + a x-a y+b x-b y

The lines a x+b y=c, b x+c y=a and c x+a y=b are concurrent, if

Prove that |a x-b y-c z a y+b x c x+a z a y+b x b y-c z-a x b z+c y c x+a z b z+c y c z-a x-b y|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

Prove that |a x-b y-c z a y+b x c x+a z a y+b x b y-c z-a x b z+c y c x+a z b z+c y c z-a x-b y|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

Solve: a x+b y=c ,\ \ \ \ b x+a y=1+c

Solve: a x+b y=c ,\ \ \ \ b x+a y=1+c

If x/(b + c -a) = y/(c + a - b) = z/(a + b -c) , then show that (b -c) x + (c-a) y + (a -b) z = 0 .