Home
Class 7
MATHS
x+7-(16x)/(3)=12-(7x)/(2)...

`x+7-(16x)/(3)=12-(7x)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (4x+17)/(18)-(13 x-2)/(17 x-32)+x/3=(7x)/(12)-(x+16)/(36)

Solve: (4x+17)/(18)-(13 x-2)/(17 x-32)+x/3=(7x)/(12)-(x+16)/(36)

(3x+8)/16-((12x-6)/(15x-30))+x/3=(7x)/12-((2x+16)/32)

f(x)=( x^(3))/(3)+(7x^(2))/(2)+12x+6

Solve : (7x +3)/(4) + (9x -5)/(8) = (16x-3)/(16) The following steps are involved in solving the above problem. Arrange them in sequential order (A) x = (-5)/(30) = (-1)/(6) (B) (7x + 3)/(4) + (9x -5)/(8) = (16x-3)/(16) rArr (14x + 6 + 9x -5)/(8) = (16x -3)/(16) (C) (23x + 1)/(8) = (16x -3)/(16) rArr 23x + 1 = (16x -3)/(2) (D) 46x + 2 = 16x - 3 rArr 30 x = -5

If x=(3)/(16)(3)+(3.7)/(16.32)(3)^(2)+(3.7.11)/(16.32.48)(3)^(3) +… then show that x^(2)+2x=7

If 16cot x=12, then (sin x-cos x)/(sin x+cos x) equals (1)/(7)(b)(3)/(7)(c)(2)/(7)(d)0

Simplify : (3x^2-x-2)/(x^2-7x+12)div(3x^2-7x-6)/(x^2-4)

Verify Rolle's theorem for each of the following functions : f(x) = x^(3) - 7x^(2) + 16x - 12 " in " [2, 3]

Verify Rolle's theorem for the following functions in the given intervals. f(x) = x^(3) - 7x^(2) + 16x - 12 in the interval [2,3].