Home
Class 11
MATHS
Prove that: i) sin(5pi)/(18) - cos(4pi...

Prove that:
i) `sin(5pi)/(18) - cos(4pi)/(9) = sqrt(3)sinpi/9`
ii) `cos(3pi)/4+A-cos((3pi)/(4)-A)=-sqrt(2)sinA`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that : sin((5pi)/18)-cos((4pi)/9)=sqrt(3)sin(pi/9)

cos((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt(2) sin x

Prove that: cos((3pi)/(4)+A)-cos((3pi)/(4)-A)=-sqrt(2)sinA

Prove that: cos((3pi)/(4)+A)-cos((3pi)/(4)-A)=-sqrt(2)sinA

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that cos((3pi)/(4)+x)-cos((3pi)/(4)-x)=-sqrt(2)sinx

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

sin ((5 pi) / (18)) - cos ((4 pi) / (9)) = sqrt (3) sin ((pi) / (9))

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=sqrt(2)sin x