Home
Class 11
MATHS
sin x+sin^2 x=1, then value of cos^6x+c...

`sin x+sin^2 x=1`, then value of `cos^6x+cos^2x-sinx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2 cos x +sin x=1 then value of 7 cos x + 6 sin x lis equal to

If sin x + sin ^(2) x=1 then the value of (cos ^(8) x+2 cos ^(6)x +cos ^(4) x) is-

If sinx + sin^(2) x = 1 , then the value of cos^(12)x +3 cos^(10) x + 3 cos^(8) x + cos^(6) x - 2 is equal to

If sinx+ sin^2x =1 , then cos^8x+ 2cos^6x +cos^4x =

If sinx+sin^2x=1. then evaluate : (i) cos^8x+2cos^6x+cos^4x

If sinx+sin^2x=1 n then the value of cos^12x+3cos^10x+3cos^8x+cos^6x-1 is equal to

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-2