Home
Class 11
MATHS
If sec alpha and alpha are the roots of...

If sec `alpha and alpha` are the roots of `x^2-p x+q=0,` then (a) `p^2=q(q-2)` (b) `p^2=q(q+2)` (c)`p^2q^2=2q` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec alpha and cosec alpha are the roots of x^2-px+q=0 then prove that p^2=q(q+2)

If secalpha and cosecalpha are the roots of the equation x^2-px+q=0 , then (i) p^2=q(q-2) (ii) p^2=q(q+2) (iii) p^2+q^2=2q (iv) none of these

If secalpha and cosecalpha are the roots of the equation x^2-px+q=0, then (i)p^2=q(q-2) (ii)p^2=q(q+2) (iii)p^2+q^2=2q (iv) none of these

If sec alpha and cosec alpha are the roots of x^2-p x+q+0, then p^2=q(q-2) (b) p^2=q(q+2) p^2q^2=2q (d) none of these

If sec alpha and "cosec" alpha are the roots of x^(2)- px+q=0 then show that p^(2)=q(q+2)

If p and q are the roots of the equation x^2-p x+q=0 , then

If sec alpha and cosec alpha are the roots of the equation x^(2)-px+q=0 , then a) p^(2)=p+2q b) q^(2)=p+2q c) p^(2)=q(q+2) d) q^(2)=p(p+2)

If p and q are the roots of the equation x^(2)+p x+q=0 then

If p and q are the roots of the equation x^2-p x+q=0 , then (a) p=1,\ q=-2 (b) p=1,\ q=0 (c) p=-2,\ q=0 (d) p=-2,\ q=1

If p and q are the roots of the equation x^2-p x+q=0 , then (a) p=1,\ q=-2 (b) p=1,\ q=0 (c) p=-2,\ q=0 (d) p=-2,\ q=1