Home
Class 12
MATHS
Given three non-zero, non-coplanar ve...

Given three non-zero, non-coplanar vectors ` vec a , vec b ,a n d vec cdot vec r_1=p vec a+q vec b+ vec ca n d vec r_2= vec a+p vec b+q vec cdot` If the vectors ` vec r_1()_+2 vec r_2a n d2 vec r_1+ vec r_2` are collinear, then `(P ,q)` is a. `(0,0)` b. `(1,-1)` c. `(-1,1)` d. `(1,1)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec p = vec a + vec b, vec q = vec a-vec b | vec a | = | vec b | = 1 then | vec p xxvec q | =

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec a is a unit vector, vec a xxvec r = vec b, vec a * vec r = c, vec a * vec b = 0, then vec r is equal to

For three vectors vec p,vec q and vec r if vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec a is a unit vector, vec a xxvec r = vec b, vec a * vec r = c, vec a * vec b = 0 then vec r is equal to

If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

If vec p + vec q + vec r = xvec s and vec q + vec r + vec s = yvec p and are vec p, vec q, vec r non coplaner vectors then | vec p + vec q + vec r + vec r + vec s | =

If vec rdot vec a=0, vec rdot vec b=1a n d[ vec r vec a vec b]=1, vec adot vec b!=0,( vec adot vec b)^2-=| vec a|^2| vec b|^2=1, then find vec r in terms of vec aa n d vec bdot

If vec P+ vec Q = vec R and |vec P| = |vec Q| = | vec R| , then angle between vec P and vec Q is

If vec a, vec b, vec c and vec d are unit vectors such that (vec a xxvec b) * (vec c xxvec d) = 1 and vec a * vec c = (1) / (2)