Home
Class 12
MATHS
Let vec r1, vec r2, vec r3, , vec rn b...

Let ` vec r_1, vec r_2, vec r_3, , vec r_n` be the position vectors of points `P_1,P_2, P_3 ,P_n` relative to the origin `Odot` If the vector equation `a_1 vec r_1+a_2 vec r_2++a_n vec r_n=0` hold, then a similar equation will also hold w.r.t. to any other origin provided a. `a_1+a_2+dot+a_n=n` b. `a_1+a_2+dot+a_n=1` c. `a_1+a_2+dot+a_n=0` d. `a_1=a_2=a_3dot+a_n=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vecr_1, vecr_2,……vecr_n be the position of points P_1,P_2,………,P_n respectively relative to an origin O. Show that if the vector equation a_1vecr_1+a_2vecr_2+..+a_nvecr_n=vec0 holds, then a similar equation will also hold good wilth respect to any other origin if a_1+a_2+......+a_n=0

If a_1, a_2, a_3,...a_n are in A.P with common difference d !=0 then the value of sind(coseca_1 coseca_2 +cosec a_2 cosec a_3+...+cosec a_(n-1) cosec a_n) will be

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : 1+a_1+a_2+…+a_(n-1) =0.

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.