Home
Class 12
MATHS
If the length of the latusrectum of the ...

If the length of the latusrectum of the ellipse `x^(2) tan^(2) theta + y^(2) sec^(2) theta = 1` is 1/2, then `theta =`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1+tan^(2)theta)/(sec^(2)theta)=

(1+tan^(2)theta)=sec^(2)theta

If 1+ tan^(2) theta = sec^(2) theta then find (sec theta + tan theta)

If 1+ tan^(2) theta = sec^(2) theta then find (sec theta + tan theta)

If the equation of family of ellipse is x^(2)sec^(2)theta+y^(2)cosec^(2)theta=1, where pi/4ltthetaltpi/2 , then the locus of extremities of the latusrectum is

If the equation of family of ellipse is x^(2)sec^(2)theta+y^(2)cosec^(2)theta=1, where pi/4ltthetaltpi/2 , then the locus of extremities of the latusrectum is

If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

sec^(6)theta=tan^(6)theta+3tan^(2)theta sec^(2)theta+1