Home
Class 12
MATHS
If vec a , vec ba n d vec c are any th...

If ` vec a , vec ba n d vec c` are any three non-coplanar vectors, then prove that points `l_1 vec a+m_1 vec b+n_1 vec c , l_2 vec a+m_2 vec b+n_2 vec c ,l_3 vec a+m_3 vec b+n_3 vec c ,l_4 vec a+m_4 vec b+n_4 vec c` are coplanar if `[[l_1,l_2,l_3,l_4],[m_1,m_2,m_3,m_4],[n_1,n_2,n_3,n_4],[ 1 ,1 ,1, 1]]=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that if [ vec l vec m vec n] are three non-coplanar vectors, then [ vec l vec m vec n]( vec axx vec b)=| vec ldot vec a vec ldot vec b vec l vec mdot vec a vec mdot vec b vec m vec ndot vec a vec ndot vec b vec n| .

If vec a,vec b,vec c are non coplanar vectors,prove that the following vectors are non coplanar: 2vec a-vec b+3vec c,vec a+vec b-2vec c and vec a+vec b-3vec c

If vec a,vec b,vec c are non coplanar vectors,prove that the following vectors are non coplanar: vec a+2vec b+3vec c,2vec a+vec b+3vec c and vec a+vec b+vec c

Prove that four points 2vec a+3vec b-vec c,vec a-2vec b+3vec c,3vec a+4vec b-2vec c and vec a-6vec b+6vec c are coplanar.

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

vec a + 2vec b + 3vec c = vec 0 and vec a xxvec b + vec b xxvec c + vec c xxvec a = l (vec b xxvec c) then l =

If vec a,vec b and vec c are unit coplanar vectors, then the scalar triple product [2vec a-vec b2vec b-vec c2vec c-vec a] is 0 b.1 c.-sqrt(3)d.sqrt(3)

If vec a and vec b are two non-collinear vectors, show that points l_(1)vec a+m_(1)vec b,l_(2)vec a+m_(2)vec b and l_(3)vec a+m_(3)vec b are collinear if det[[l_(1),m_(2),l_(3)m_(1),m_(2),m_(3)1,1,1]]=0

If | vec a | = | vec b | = 1, | vec c | = 3vec b * vec c = - (3) / (4) and vec a xxvec c = 2 (vec a xxvec b)

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot