Home
Class 12
PHYSICS
If |vecA+vecB|=|vecA|=|vecB| then angle...

If `|vecA+vecB|=|vecA|=|vecB|` then angle between A and B will be

A

`90^(@)`

B

`120^(@)`

C

`0^(@)`

D

`60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between vectors \(\vec{A}\) and \(\vec{B}\) given that \(|\vec{A} + \vec{B}| = |\vec{A}| = |\vec{B}|\), we can follow these steps: ### Step 1: Set up the equations Given that \(|\vec{A}| = |\vec{B}| = a\), we can denote: \[ |\vec{A}| = a \quad \text{and} \quad |\vec{B}| = a \] We also know: \[ |\vec{A} + \vec{B}| = a \] ### Step 2: Use the formula for the magnitude of the sum of two vectors The magnitude of the sum of two vectors can be expressed as: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta} \] Substituting the values of \(|\vec{A}|\) and \(|\vec{B}|\): \[ |\vec{A} + \vec{B}| = \sqrt{a^2 + a^2 + 2a^2 \cos \theta} \] This simplifies to: \[ |\vec{A} + \vec{B}| = \sqrt{2a^2(1 + \cos \theta)} \] ### Step 3: Set the magnitudes equal Since we know that \(|\vec{A} + \vec{B}| = a\), we can set up the equation: \[ \sqrt{2a^2(1 + \cos \theta)} = a \] ### Step 4: Square both sides Squaring both sides gives: \[ 2a^2(1 + \cos \theta) = a^2 \] ### Step 5: Simplify the equation Dividing both sides by \(a^2\) (assuming \(a \neq 0\)): \[ 2(1 + \cos \theta) = 1 \] This simplifies to: \[ 2 + 2\cos \theta = 1 \] ### Step 6: Solve for \(\cos \theta\) Rearranging gives: \[ 2\cos \theta = 1 - 2 \] \[ 2\cos \theta = -1 \] \[ \cos \theta = -\frac{1}{2} \] ### Step 7: Find the angle \(\theta\) The angle \(\theta\) for which \(\cos \theta = -\frac{1}{2}\) is: \[ \theta = 120^\circ \quad \text{(in the second quadrant)} \] ### Final Answer Thus, the angle between vectors \(\vec{A}\) and \(\vec{B}\) is: \[ \theta = 120^\circ \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be

If |vecA-vecB|=|vecA|=|vecB| , the angle between vecA and vecB is

if| vecAxxvecB|=|vecA.vecB| , then angle between vecA and vecB will be

If vecA*vecB=|vecAxxvecB| . Then angle between vecA and vecB is

Statement-1:If , |vec A+vec B| =|vecA-vecB| then angle between vecA and vecB is 90^(@) Statement-2 :vecA+vecB=vecB+vecA

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If vecA.vecB = |vecA xx vecB| , find angle between vecA and vecB .

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If |veca+vecb|^2=|veca|^2+|vecb|^2 then angle between veca and vecb is