Home
Class 12
PHYSICS
In the following questions a statement o...

In the following questions a statement of assertion (A) is followed by a statement of reason ( R).
A : If `vecA bot vecB,` then `|vecA+vecB|=|A-vecB|`.
R: If `vecA bot vecB` then `(vecA+vecB) ` is perpendicular to `vecA-vecB` .

A

If both Assertion & Reason are true and the reason is the correct explanation of the assertion then mark (1) .

B

If both Assertion & Reason are true but the reason is not the correct explanation of the assertion then mark (2)

C

If Assertion is true statement but Reason is false then mark (3).

D

If both Assertion and Reason are false statements then mark (4) .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given question, we need to analyze both the assertion (A) and the reason (R) provided: ### Step 1: Understand the Assertion The assertion states: **A**: If \(\vec{A} \perp \vec{B}\), then \(|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|\). This means that if vector A is perpendicular to vector B, the magnitudes of the resultant vectors formed by adding and subtracting A and B are equal. ### Step 2: Analyze the Condition of Perpendicular Vectors When two vectors are perpendicular, the angle \(\theta\) between them is \(90^\circ\). The cosine of \(90^\circ\) is zero. ### Step 3: Apply the Formula for Magnitudes Using the formula for the magnitude of the sum and difference of two vectors: - \(|\vec{A} + \vec{B}|^2 = |\vec{A}|^2 + |\vec{B}|^2 + 2|\vec{A}||\vec{B}|\cos(90^\circ)\) - \(|\vec{A} - \vec{B}|^2 = |\vec{A}|^2 + |\vec{B}|^2 - 2|\vec{A}||\vec{B}|\cos(90^\circ)\) Since \(\cos(90^\circ) = 0\), we simplify both equations: - \(|\vec{A} + \vec{B}|^2 = |\vec{A}|^2 + |\vec{B}|^2\) - \(|\vec{A} - \vec{B}|^2 = |\vec{A}|^2 + |\vec{B}|^2\) ### Step 4: Conclude the Assertion From the above simplifications, we see that: \(|\vec{A} + \vec{B}|^2 = |\vec{A} - \vec{B}|^2\) Taking the square root of both sides gives us: \(|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|\) Thus, the assertion is **true**. ### Step 5: Understand the Reason The reason states: **R**: If \(\vec{A} \perp \vec{B}\), then \((\vec{A} + \vec{B})\) is perpendicular to \((\vec{A} - \vec{B})\). To check this, we can use the dot product: \[ (\vec{A} + \vec{B}) \cdot (\vec{A} - \vec{B}) = \vec{A} \cdot \vec{A} - \vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{A} - \vec{B} \cdot \vec{B} \] Since \(\vec{A} \cdot \vec{B} = 0\) (because they are perpendicular), we have: \[ |\vec{A}|^2 - |\vec{B}|^2 \] This does not necessarily equal zero unless \(|\vec{A}| = |\vec{B}|\). Therefore, the reason is **not always true**. ### Final Conclusion - Assertion (A) is **true**. - Reason (R) is **false**. Thus, the answer is **C**: Assertion is true, but reason is false. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA||vecB then vecA xx vecB =……….

If vecA+vecB=vecR and 2vecA+vecB is perpendicular to vecB then

If vecA is …………….to vecB , then vecA.vecB = 0

If vec A . vecB = vecA*vecB , find |vecA - vecB|

If veca , vecb are two vectors such that | (veca+vecb)=|veca| then prove that 2 veca + vecb is perpendicular to vecb.

When vecA.vecB=-|vecA||vecB| , then :-

Assertion: If theta be the angle between vecA and vecB then tan theta=(vecAxxvecB)/(vecA.vecB) Reason: vecAxxvecB is perpendicular to vecA.vecB

If vecA.vecB = |vecA xx vecB| , find angle between vecA and vecB .

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be