Home
Class 12
PHYSICS
Three vectors are given below vec(a)=h...

Three vectors are given below
`vec(a)=hat(i)+2hat(i)+3hat(k),vec(b) = 2hat(i)+4hat(j) + 6 hat(k) and vec(c ) = 3hat(i) + 6hat(j) + 9hat(k)`.
Find the components of the vector `bara+barb-barc`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the components of the vector \( \vec{a} + \vec{b} - \vec{c} \). Let's break it down step by step. ### Step 1: Write down the vectors We have the following vectors: - \( \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \) - \( \vec{b} = 2\hat{i} + 4\hat{j} + 6\hat{k} \) - \( \vec{c} = 3\hat{i} + 6\hat{j} + 9\hat{k} \) ### Step 2: Add vectors \( \vec{a} \) and \( \vec{b} \) Now, we need to add \( \vec{a} \) and \( \vec{b} \): \[ \vec{a} + \vec{b} = (\hat{i} + 2\hat{j} + 3\hat{k}) + (2\hat{i} + 4\hat{j} + 6\hat{k}) \] ### Step 3: Combine like terms Combine the components of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \): \[ \vec{a} + \vec{b} = (1 + 2)\hat{i} + (2 + 4)\hat{j} + (3 + 6)\hat{k} = 3\hat{i} + 6\hat{j} + 9\hat{k} \] ### Step 4: Subtract vector \( \vec{c} \) Now, we subtract \( \vec{c} \) from \( \vec{a} + \vec{b} \): \[ \vec{a} + \vec{b} - \vec{c} = (3\hat{i} + 6\hat{j} + 9\hat{k}) - (3\hat{i} + 6\hat{j} + 9\hat{k}) \] ### Step 5: Combine like terms again Combine the components: \[ \vec{a} + \vec{b} - \vec{c} = (3 - 3)\hat{i} + (6 - 6)\hat{j} + (9 - 9)\hat{k} = 0\hat{i} + 0\hat{j} + 0\hat{k} \] ### Step 6: Write the final result Thus, the components of the vector \( \vec{a} + \vec{b} - \vec{c} \) are: \[ \vec{a} + \vec{b} - \vec{c} = 0\hat{i} + 0\hat{j} + 0\hat{k} \] ### Conclusion The components of the vector \( \vec{a} + \vec{b} - \vec{c} \) are \( (0, 0, 0) \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Find the sum of the vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) , and vec(c )=hat(i)-6hat(j)-7hat(k) .

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)+2hat(k) .

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a)=2hat(i)+hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k) , and vec(c)=-3hat(i)+hat(j)+2hat(k) , find [hat(a)hat(b)hat(c)] .

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .