Home
Class 12
CHEMISTRY
From the following molar conductivities ...

From the following molar conductivities at infinite dilution,
`Lamda_(m)^(@) " for " Al_(2) (SO_(4))_(3) = 858 S cm^(2) mol^(-1)`
`Lamda_(m)^(@) " for " NH_(4)OH = 238.3 S cm^(2) mol^(-1)`
`Lamda_(m)^(@) " for " (NH_(4))_(2)SO_(4) = 238.4 S cm^(2) mol^(-1)`
Calculate `Lamda_(m)^(@) " for " Al(OH)_(3)`

A

`715.2 S cm^(2) mol^(-1)`

B

`1575.6 S cm^(2) mol^(-1)`

C

`786.3 S cm^(2) mol^(-1)`

D

`157.56 S cm^(2) mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the limiting molar conductivity (\( \Lambda_m^\circ \)) for \( \text{Al(OH)}_3 \) using the provided molar conductivities at infinite dilution, we can apply Kohlrausch's law, which states that the molar conductivity of an electrolyte can be expressed as the sum of the contributions from its individual ions. ### Step-by-Step Solution: 1. **Identify the ions in \( \text{Al(OH)}_3 \)**: - The dissociation of \( \text{Al(OH)}_3 \) can be represented as: \[ \text{Al(OH)}_3 \rightarrow \text{Al}^{3+} + 3 \text{OH}^- \] - Therefore, the ions involved are \( \text{Al}^{3+} \) and \( \text{OH}^- \). 2. **Use the molar conductivities of the relevant ions**: - From the given data: - \( \Lambda_m^\circ \) for \( \text{Al}_2(\text{SO}_4)_3 \) = 858 S cm² mol⁻¹ - \( \Lambda_m^\circ \) for \( \text{NH}_4\text{OH} \) = 238.3 S cm² mol⁻¹ - \( \Lambda_m^\circ \) for \( (NH_4)_2SO_4 \) = 238.4 S cm² mol⁻¹ 3. **Determine the contribution of \( \text{Al}^{3+} \)**: - The molar conductivity of \( \text{Al}^{3+} \) can be derived from \( \text{Al}_2(\text{SO}_4)_3 \): \[ \text{Al}_2(\text{SO}_4)_3 \rightarrow 2 \text{Al}^{3+} + 3 \text{SO}_4^{2-} \] - Therefore, the contribution of \( \text{Al}^{3+} \) is: \[ \Lambda_{\text{Al}^{3+}} = \frac{1}{2} \Lambda_m^\circ(\text{Al}_2(\text{SO}_4)_3) = \frac{858}{2} = 429 \text{ S cm}^2 \text{ mol}^{-1} \] 4. **Determine the contribution of \( \text{OH}^- \)**: - The \( \text{OH}^- \) ions come from \( \text{NH}_4\text{OH} \): - Since \( \text{NH}_4\text{OH} \) produces \( \text{NH}_4^+ \) and \( \text{OH}^- \): \[ \text{NH}_4\text{OH} \rightarrow \text{NH}_4^+ + \text{OH}^- \] - Therefore, the contribution of \( \text{OH}^- \) is: \[ \Lambda_{\text{OH}^-} = \Lambda_m^\circ(\text{NH}_4\text{OH}) = 238.3 \text{ S cm}^2 \text{ mol}^{-1} \] 5. **Calculate the total molar conductivity for \( \text{Al(OH)}_3 \)**: - The total molar conductivity for \( \text{Al(OH)}_3 \) is given by: \[ \Lambda_m^\circ(\text{Al(OH)}_3) = \Lambda_{\text{Al}^{3+}} + 3 \Lambda_{\text{OH}^-} \] - Substituting the values: \[ \Lambda_m^\circ(\text{Al(OH)}_3) = 429 + 3 \times 238.3 \] \[ = 429 + 714.9 = 1143.9 \text{ S cm}^2 \text{ mol}^{-1} \] 6. **Final Result**: - The limiting molar conductivity for \( \text{Al(OH)}_3 \) is: \[ \Lambda_m^\circ(\text{Al(OH)}_3) = 1143.9 \text{ S cm}^2 \text{ mol}^{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

From the following molar conductivities at infinite dilution : wedge_(m)^(@) for Ba(OH)_(2)=457.6Omega^(1)cm^(2)mol^(-1) wedge_(m)^(@) for BaCl_(2)=240.6Omega^(-1) cm^(2)mol^(-1) wedge_(m)^(@) for NH_(4)Cl=129.8 Omega^(-1) cm^(2) mol^(-1) Calculate wedge_(m)^(@) for NH_(4)OH .

Calculate degree of dissocation of 0.02 M acetic acid at 298K. Given that Lamda_(m) (CH_(3)COOH)= 17.37 S cm^(2) mol^(-1), lamda_(m)^(@) (H^(+)) = 345.8 S cm^(2) mol^(-1), lamda_(m)^(@) (CH_(3)COO^(-)) = 40.2S cm^(2) mol^(-1)

What will be the molar conductivity of Al 3+ ions at infinite dilution if molar conductivity of Al^(2) (SO_(4))_(3) is 858 S cm^(2) "mol" ^(-1) and ionic conductance of SO_(4)^(2-) is 160 S cm^(2) "mol" ^(-1) at infinite dilution ?

The molar conductivity of BaSO_4 at infinite dilution is: Given : lamda_m^@(BaCl_2) = 278ohm^(-1)mol^(-1)cm^2 , lamda_m^@(H_2SO_4) = 860ohm^(-1)mol^(-1)cm^2, lamda_m^@(HCl) = 426ohm^(-1)mol^(-1)cm^2

Given the following molar conductives at infinite dilution and 25^(@)C "HCl"=426, KCl=150 , CaCl_(2) =272 NaCl=126.5 and Na_(2)SO_(4) = 260 S CN^(3) mol^(-1) . Calculate overset(oo)Lambda_(m) of K_(2)SO_(4) :-

At 298 K the molar conductivities at infinite dilution (^^_(m)^(@)) of NH_(4)Cl, KOH and KCl are 152.8, 272.6 and "149.8 S cm"^(2)"mol"^(-1) respectively. The ^^_(m)^(@) of NH_(4)OH in "S cm"^(2)"mol"^(-1) and % dissociation of 0.01 M NH_(4)OH with ^^_(m)="25.1 S cm"^(2)"mol"^(-1) at the same temperature are

Calculate the degree of dissociation (alpha) of acetic acid if its molar conductivity (^^_(m)) is 39.05 S cm^(2) mol^(-1) Given lamda^(@) (H^(+)) = 349.6 cm^(2) mol^(-1) and lamda^(2) (CH_(3)COO^(-)) = 40.9 S cm^(2) mol^(-1)