Home
Class 12
CHEMISTRY
Calculate the half cell potential at 298...

Calculate the half cell potential at 298K for the reaction, `Zn^(+2) + 2e^(-) rarr Zn " if " [Zn^(+2)] =2M, E_(Zn^(+2)//Zn)^(@) = -0.76V`

A

`-0.90V`

B

`-0.75V`

C

`-0.85V`

D

`-0.65V`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the half-cell potential for the reaction \( \text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \) at 298 K, given that the concentration of \( \text{Zn}^{2+} \) is 2 M and the standard electrode potential \( E^\circ \) is -0.76 V, we can use the Nernst equation: ### Step-by-Step Solution: 1. **Write the Nernst Equation**: The Nernst equation is given by: \[ E = E^\circ - \frac{0.0591}{n} \log \left( \frac{1}{[\text{Zn}^{2+}]} \right) \] where: - \( E \) is the half-cell potential we want to calculate. - \( E^\circ \) is the standard electrode potential. - \( n \) is the number of electrons transferred in the half-reaction. - \( [\text{Zn}^{2+}] \) is the concentration of zinc ions. 2. **Identify Values**: From the problem: - \( E^\circ = -0.76 \, \text{V} \) - \( [\text{Zn}^{2+}] = 2 \, \text{M} \) - \( n = 2 \) (since 2 electrons are involved in the reduction of \( \text{Zn}^{2+} \) to \( \text{Zn} \)). 3. **Substitute Values into the Nernst Equation**: Substitute the values into the equation: \[ E = -0.76 - \frac{0.0591}{2} \log \left( \frac{1}{2} \right) \] 4. **Calculate the Logarithm**: Calculate \( \log \left( \frac{1}{2} \right) \): \[ \log \left( \frac{1}{2} \right) = -\log(2) \approx -0.3010 \] 5. **Substitute the Logarithm Value**: Substitute this back into the equation: \[ E = -0.76 - \frac{0.0591}{2} (-0.3010) \] 6. **Calculate the Potential**: Calculate \( \frac{0.0591}{2} \): \[ \frac{0.0591}{2} \approx 0.02955 \] Now substitute: \[ E = -0.76 + (0.02955 \times 0.3010) \] Calculate \( 0.02955 \times 0.3010 \): \[ 0.02955 \times 0.3010 \approx 0.00889 \] Now, substitute this value: \[ E = -0.76 + 0.00889 \approx -0.7511 \, \text{V} \] 7. **Final Result**: Rounding to two decimal places, we get: \[ E \approx -0.75 \, \text{V} \] ### Final Answer: The half-cell potential at 298 K for the reaction \( \text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \) is approximately \( -0.75 \, \text{V} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate the half-cell potential at 298 K for the reaction, Zn^(2+)+2e^(-) rarr Zn If [Zn^(2+)]=0.1 M and E^(@)=-0.76 volt.

Calculate the equilibrium constant for the reaction at 298K. Zn(s) +Cu^(2+)(aq) hArr Zn^(2+)(aq) +Cu(s) Given, E_(Zn^(2+)//Zn)^(@) =- 0.76V and E_(Cu^(2+)//Cu)^(@) = +0.34 V

Calculate the equilibrium constant for the reaction at 298 K Zn(s)+Cu^(2+)(aq)harr Zn^(2+)(aq)+Cu(s) Given " " E_(Zn^(2+)//Zn)^(@)=-0.76 V and E_(Cu^(2+)//Cu)^(@)=+0.34 V

Calculate the cell e.m.f. and DeltaG for the cell reaction at 298K for the cell. Zn(s) | Zn^(2+) (0.0004M) ||Cd^(2+) (0.2M)|Cd(s) Given, E_(Zn^(2+)//Zn)^(@) =- 0.763 V, E_(Cd^(+2)//Cd)^(@) = - 0.403 V at 298K . F = 96500 C mol^(-1) .

The standard cell potential for the cell Zn|Zn^(2+) (1 M)|| Cu^(2+) (1 M)| Cu Given E_(Cu^(2+)//Cu)^(@) = 0.34 V and E_(Zn^(2+)//Zn)^(@) = - 0.76 V is

Reduction potential for the following h alf-cell reaction are Zn rarr Zn rarr Zn^(2+)+2e^(-),E_(Zn^(2+)//Zn)^(@) = -0.76V Fe rarr Fe^(2+)+2e^(-),E_(Fe^(2+)//Fe)^(@) = -0.76V The emf for the cell reaction Fe^(2+)Zn rarr Zn^(2+)+Fe will be