Home
Class 12
CHEMISTRY
Find out the E("cell")^(@) from the give...

Find out the `E_("cell")^(@)` from the given data
(a) `Zn|Zn^(+2)|| Cu^(+2)| Cu, E_("cell")^(@) = 1.10V`
(b) `Cu| Cu^(+2)|| Ag^(+)|Ag, E_("cell")^(@) = 0.46V`
( c) `Zn|Zn^(+2)||Ag^(+) | Ag, E_("cell")^(@) = ?`
(Given `E_(Cu^(+2)//Cu)^(@) = 0.34V`)

A

`-0.04V`

B

`+0.04V`

C

`+0.30V`

D

1.56V

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard cell potential \( E_{\text{cell}}^\circ \) for the cell \( \text{Zn} | \text{Zn}^{2+} || \text{Ag}^+ | \text{Ag} \), we can use the data provided from the two other cells. ### Step-by-Step Solution: 1. **Identify the Reactions and Their Standard Potentials:** - For the cell \( \text{Zn} | \text{Zn}^{2+} || \text{Cu}^{2+} | \text{Cu} \): - Oxidation: \( \text{Zn} \rightarrow \text{Zn}^{2+} + 2e^- \) - Reduction: \( \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \) - Standard cell potential \( E_{\text{cell}}^\circ = 1.10 \, \text{V} \) - For the cell \( \text{Cu} | \text{Cu}^{2+} || \text{Ag}^+ | \text{Ag} \): - Oxidation: \( \text{Cu} \rightarrow \text{Cu}^{2+} + 2e^- \) - Reduction: \( \text{Ag}^+ + e^- \rightarrow \text{Ag} \) - Standard cell potential \( E_{\text{cell}}^\circ = 0.46 \, \text{V} \) 2. **Write the Half-Reactions:** - From the given data, we know: - \( E^\circ_{\text{Cu}^{2+}/\text{Cu}} = 0.34 \, \text{V} \) (reduction potential) - Therefore, the oxidation potential for copper is: \[ E^\circ_{\text{Cu}/\text{Cu}^{2+}} = -0.34 \, \text{V} \] 3. **Combine the Reactions:** - We need to find the standard cell potential for the reaction involving zinc and silver: - The overall reaction can be derived from combining the two previous reactions: \[ \text{Zn} + 2\text{Ag}^+ \rightarrow \text{Zn}^{2+} + 2\text{Ag} \] 4. **Calculate the Standard Cell Potential:** - The standard cell potential for the combined reaction can be calculated by adding the potentials of the two half-reactions: - For the zinc oxidation: \[ E^\circ_{\text{Zn}/\text{Zn}^{2+}} = 0.76 \, \text{V} \quad (\text{from } 1.10 \, \text{V}) \] - For the silver reduction: \[ E^\circ_{\text{Ag}^+/\text{Ag}} = 0.80 \, \text{V} \quad (\text{from } 0.46 \, \text{V}) \] - Therefore, the total standard cell potential is: \[ E_{\text{cell}}^\circ = E^\circ_{\text{Zn}/\text{Zn}^{2+}} + E^\circ_{\text{Ag}^+/\text{Ag}} = 0.76 + 0.80 = 1.56 \, \text{V} \] ### Final Answer: The standard cell potential \( E_{\text{cell}}^\circ \) for the cell \( \text{Zn} | \text{Zn}^{2+} || \text{Ag}^+ | \text{Ag} \) is \( 1.56 \, \text{V} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For the cell given, below Zn|Zn^(2)||Cu^(2+)|Cu,(E_(cell)-E_(cell)^(@)) is -0.12 V. it will be when

For a cell given below Ag|Ag^(+)||Cu^(2+)|Cu Ag^(+)+e^(-)toAg,E^(@)=x Cu^(2+)+2e^(-)toCu,E^(@)=y then E_(cell)^(@) is

Find E_(cell)^(@) for the cell : Zn | Zn^(2+)(1M) || Ag^(+)(1M) | Ag [Given that : E_(Zn//Zn^(2+))^(@)=0.76" V" , E_(Ag^(+)//Ag)^(@)=0.80" V" .

The standard cell potential for the cell Zn|Zn^(2+) (1 M)|| Cu^(2+) (1 M)| Cu Given E_(Cu^(2+)//Cu)^(@) = 0.34 V and E_(Zn^(2+)//Zn)^(@) = - 0.76 V is