Home
Class 12
CHEMISTRY
Standard cell voltage for the cell Pb//P...

Standard cell voltage for the cell `Pb//Pb^(2+)||Sn^(2+)//Sn " is " -0.01V`. If the cell is the exhibit `E_("cell") = 0`, the value of log `[Sn^(2+)]//[Pb^(2+)]` should be

A

0.33

B

0.5

C

1.5

D

`-0.5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\log \left(\frac{[Sn^{2+}]}{[Pb^{2+}]}\right)\) given that the standard cell voltage \(E_{cell} = 0\) and the standard cell voltage for the cell \(Pb//Pb^{2+}||Sn^{2+}//Sn\) is \(-0.01V\). ### Step-by-Step Solution: 1. **Identify the Given Values:** - Standard cell voltage \(E_{cell} = 0\) - Standard cell voltage \(E^{\circ}_{cell} = -0.01V\) 2. **Use the Nernst Equation:** The Nernst equation relates the cell potential to the concentrations of the reactants and products: \[ E_{cell} = E^{\circ}_{cell} - \frac{RT}{nF} \log \left(\frac{[Products]}{[Reactants]}\right) \] Here, \(R\) is the universal gas constant, \(T\) is the temperature in Kelvin, \(n\) is the number of moles of electrons transferred, and \(F\) is Faraday's constant. 3. **Determine the Number of Electrons Transferred (\(n\)):** The half-reaction for the oxidation of lead (\(Pb\)) and the reduction of tin (\(Sn^{2+}\)) involves 2 electrons: \[ Pb \rightarrow Pb^{2+} + 2e^{-} \quad (Oxidation) \] \[ Sn^{2+} + 2e^{-} \rightarrow Sn \quad (Reduction) \] Thus, \(n = 2\). 4. **Substituting Values into the Nernst Equation:** We can substitute the known values into the Nernst equation: \[ 0 = -0.01 - \frac{(8.314)(298)}{(2)(96500)} \log \left(\frac{[Sn^{2+}]}{[Pb^{2+}]}\right) \] 5. **Calculate \(\frac{RT}{nF}\):** First, calculate \(\frac{RT}{nF}\): \[ \frac{RT}{nF} = \frac{(8.314)(298)}{(2)(96500)} \approx 0.0591 \] 6. **Rearranging the Nernst Equation:** Rearranging the equation gives: \[ 0.01 = 0.0591 \log \left(\frac{[Sn^{2+}]}{[Pb^{2+}]}\right) \] 7. **Solving for the Logarithm:** Now, isolate the logarithm: \[ \log \left(\frac{[Sn^{2+}]}{[Pb^{2+}]}\right) = \frac{0.01}{0.0591} \] Calculate the right side: \[ \log \left(\frac{[Sn^{2+}]}{[Pb^{2+}]}\right) \approx 0.169 \] 8. **Final Expression:** Therefore, the final expression for the logarithm is: \[ \log \left(\frac{[Sn^{2+}]}{[Pb^{2+}]}\right) \approx 0.169 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The standard reduction potential for Fe^(2+) //Fe and Sn^(2+) //Sn electrodes are -0.44 and -0.14 volt respectively. For the given cell reaction Fe^(2+) + Sn rarr Fe + Sn^(2+) , the standard EMF is.

Calculate the voltage of the cell Sn(s) // Sn^(2+)(0.02 M) // Ag^(+)(0.01 M) // Ag(s) at 25^(@)C. Given: E_(Sn)^(0) = -0.136V , E_(Ag)^(0) = 0.800V