Home
Class 12
MATHS
int e^(tan^-1x)(1+x+x^2) d(cot^-1x) is e...

`int e^(tan^-1x)(1+x+x^2) d(cot^-1x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to -e^(tan^(-1)x)+c(b)e^(tan^(-1)x)+c-xe^(tan^(-1)x)+c(d)xe^(tan-1)x+c

inte^(tan^(-1)x)(1+x+x^(2))*d(cot^(-1)x) is equal to

int e^(tan^-1x)/(1+x^2)^2dx

int(e^(tan^-1x))/(1+x^2)dx =

The value of cot (tan^-1 x + cot^-1 x) is equal to :

Evaluate int e^(tan^-1x)/(1+x^2) dx

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to