Home
Class 9
MATHS
x^(3)-x^(2)y+(1)/(3)xy^(2)+y^(2)-(1)/(27...

x^(3)-x^(2)y+(1)/(3)xy^(2)+y^(2)-(1)/(27)y^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

(x^(-3)-y^(-3))/(x^(-3)y^(-1)+(xy)^(-2)+y^(-3)x^(-1))=

Find the following products: (6x)/(5)(x^(3)+y^(3)) (ii) xy(x^(3)-y^(3))0.1y(0.1x^(5)+0.1y)( iv) (8)/(27)xyz((3)/(2)xyz^(2)-(9)/(4)xy^(2)z^(3))

27x^(3)+108x^(2)y+144xy^(2)+64y^(3)

Veriffy : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2))x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

If S_(n)=(x+y)+(x^(2)+xy+y^(2))+(x^(3)+x^(2)y+y^(2)x+y^(3))+…n terms then prove that (x-y)S_(n)=[(x^(2)(x^(n)-1))/(x-1)-(y^(2)y^(n)-1)/(y-1)] .

The differential equation of all conics whose centre klies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre k lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

The differential equation of all conics whose centre klies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these