Home
Class 11
MATHS
log(b)a*log(c)b*log(d)c=log(d)a...

log_(b)a*log_(c)b*log_(d)c=log_(d)a

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of log(log_(b)a.log_(c)b*log_(d)c.log_(a)d)is

If agt1,bgt1,cgt1,dgt1 then the minimum value of log_(b)a+log_(a)b+log_(d)c+log_(c)d , is

If x,y,z are in G.P.nad a^(x)=b^(y)=c^(z), then log_(b)a=log_(a)c b.log_(c)b=log_(a)c c.log_(b)a=log_(c)b d.none of these

Let a,b" and "c are distinct positive numbers,none of them is equal to unity such that log _(b)a .log_(c)a+log_(a)b*log_(c)b+log_(a)c*log_(b)c-log_(b)a sqrt(a)*log_(sqrt(c))b^(1/3)*log_(a)c^(3)=0, then the value of abc is -

log_(a)a*log_(c)a+log_(c)b*log_(a)b+log_(a)c*log_(b)c=3 (where a,b,c are different positive real nu then find the value of abc.

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

If a,b,c,d in R^(+)-{1} , then the minimum value of log_(d) a+ log_(c)b+log _(a)c+log_(b)d is

If a,b,c,d in R^(+)-{1} , then the minimum value of log_(d) a+ log_(c)b+log _(a)c+log_(b)d is

If a, b, c are distinct positive numbers each being different from 1 such that (log_(b)a.log_(c)a-log_(a)a)+(log_(a)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)c)=0 , then abc is a)0 b)e c)1 d)2