Home
Class 13
MATHS
[" If The posod of "],[(tan theta-(1)/(3...

[" If The posod of "],[(tan theta-(1)/(3)tan^(3)theta)(tan theta-(1)/(3)tan^(2)theta)^(-1)],[" where "tan^(2)theta=(1)/(3)" is."]

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of ( tan theta -(1)/(3) tan^(3) theta ) ((1)/(3) - tan^(2) theta )^(-1), where tan^(2) theta ne (1)/(3) is :

tan^(2)theta-(1)/(2)tan^(4)theta+(1)/(3)tan^(6)theta-(1)/(4)tan^(8)theta+....=

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

Find, theta =tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

If (tan theta - 1)(tan^(2)theta - 3) = 0 then theta =

tan theta+(1)/(tan theta)=2 then prove that tan^(2)theta+(1)/(tan^(2)theta)=2