Home
Class 11
MATHS
The line y=m x-((a^2-b^2)m)/(sqrt(a^2+b^...

The line `y=m x-((a^2-b^2)m)/(sqrt(a^2+b^2m^2))` is normal to the ellise `(x^2)/(a^2)+(y^2)/(b^2)=1` for all values of `m` belonging to `(0,1)` (b) `(0,oo)` (c) `R` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The line y=m x-((a^2-b^2)m)/(sqrt(a^2+b^2m^2)) is normal to the ellise (x^2)/(a^2)+(y^2)/(b^2)=1 for all values of m belonging to (a) (0,1) (b) (0,oo) (c) R (d) none of these

The line y=mx-((a^(2)-b^(2))m)/(sqrt(a^(2)+b^(2)m^(2))) is normal to the ellise (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 for all values of m belonging to (0,1)(b)(0,oo)(c)R(d) none of these

The line L x+m y+n=0 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , if

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all reacl values of m.

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all real values of m.

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all reacl values of m.

The line l x+m y+n=0 is a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . then prove that (a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)

The line l x+m y+n=0 is a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . then prove that (a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)

The line l x+m y+n=0 is a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . then prove that (a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)

The range of values of alpha for which the line 2y=gx+alpha is a normal to the circle x^2+y^2+2gx+2gy-2=0 for all values of g is (a) [1,oo) (b) [-1,oo) (c) (0,1) (d) (-oo,1]