Home
Class 11
MATHS
Show that (sqrt(2)+1)^6+(sqrt(2)-1)^6=1...

Show that `(sqrt(2)+1)^6+(sqrt(2)-1)^6=198`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt2+1)^6+(sqrt2-1)^6=

Find (x+1)^6+(x-1)^6 . Hence or otherwise evaluate (sqrt(2)+1)^6+(sqrt(2)-1)^6 .

Find (x+1)^6+(x-1)^6 . Hence evaluate (sqrt(2)+1)^6+(sqrt(2)-1)^6 .

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

Find the value of (sqrt(2)+1)^(6)-(sqrt(2)-1)^(6)

Evaluate the following: \ (sqrt(2)+1)^6+(sqrt(2)-1)^6

Expand (a+b)^(6)-(a-b)^(6). Hence find the value of (sqrt(2)+1)^(6)-(sqrt(2)-1)^(6)

Find the value of ( sqrt(2) + 1)^(6) + ( sqrt(2) - 1)^(6) and show that the value of ( sqrt(2) + 1)^(6) lies between 197 and 198.