Home
Class 12
MATHS
If vec xa n d vec y are two non-collin...

If ` vec xa n d vec y` are two non-collinear vectors and `A B C` isa triangle with side lengths `a ,b ,a n dc` satisfying `(20 a-15 b) vec x+(15b-12 c) vec y+(12 c-20 a)( vec xxx vec y)=0,` then triangle `A B C` is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec x and vec y are two non-collinear vectors and ABC is a triangle with side lengths a,b and c satisfying (20a-15b)vec x+(15b-12c)vec y+(12c- 20a) vec x xxvec y is:

If vec x andvec y are two non-collinear vectors and a triangle ABC with side lengths a,b,c satisfying (20a-15b)vec x+(15b-12c)vec y+(12c-20a)(vec x xx vec y) = vec0 . Then triangle ABC is:

If vec xa n d vec y are two non-collinear vectors and a, b, and c represent the sides of a A B C satisfying (a-b) vec x+(b-c) vec y+(c-a)( vec xxx vec y)=0, then A B C is (where vec xxx vec y is perpendicular to the plane of xa n dy ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

vec a and vec b are two non-collinear unit vectors vec a,vec b,xvec a-yvec b form a triangle.

In A B C , if r\ : r_1: R=2\ : 12\ :5, where all symbols have their usual meaning, then A B C is an acute angled triangle A B C is an obtuse angled triangle A B C is right angled which is not isosceles A B C is isosceles which is not right angled

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

Let a,b,c denote the lengths of the sides of a triangle such that ( a-b) vecu + ( b-c) vecv + ( c-a) (vecu xx vecv) = vec0 For any two non-collinear vectors vecu and vecu ,then the triangle is

If in a /_\ABC, sin^2A+sin^2B+sin^2C=2, then /_\ is always a an (A) isosceles triangle (B) right angled triangle (C) acute angled triangle (D) obtuse angled triangle