Home
Class 12
MATHS
[" 20.The value of "log(a-b)(a^(3)-b^(3)...

[" 20.The value of "log_(a-b)(a^(3)-b^(3))-log_(a-b)(a^(2)+ab+b^(2))" is "......(a>b)],[[" (a) "0," (b) "1," (c) "3," (d) Undefined "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

the value of log_(a-b)(a^(3)-b^(3))-log_(a-b)(a^(2) +ab + b^(2)) is ______ . (a gt b)

log(a^(3) +b^(3)) -log(a+b)-log (a^(2) -ab + b^(2)) =_______

The value of log_(b)a+log_(b^(2))a^(2) + log_(b^(3))a^(3) + ... + log_(b^(n))a^(n)

If a,b in(0,1) ,then minimum value of log_(a)(ab)-log_(b)((b)/(a)) is

log_(b)(a^((1)/(2)))*log_(c)b^(3)*log_(a)(c^((2)/(3))) is equal to

log_(e^(2))^(a^(b))*log_(a^(3))^(b^(c))log_(b^(4))^(e^(a))

The sum of the series log_(a)b+log_(a^(2))b^(2)+log_(a^(3))b^(3)+....log_(a^(n))b^(n)

The value of (6 a^(log_(e)b)(log_(a^(2))b)(log_(b^(2))a))/(e^(log_(e)a*log_(e)b)) is

The value of (6 a^(log_(e)b)(log_(a^(2))b)(log_(b^(2))a))/(e^(log_(e)a*log_(e)b)) is

The sequence log a, log (a^(2)/b), log (a^(3)/b^(2)) is: