Home
Class 12
MATHS
int(dx)/(ae^(mx)+sin^(-m))=x+a^(-1)(pe^(...

int(dx)/(ae^(mx)+sin^(-m))=x+a^(-1)(pe^(mx))+c

Promotional Banner

Similar Questions

Explore conceptually related problems

int_( then K,P=)^( If )(1)/(ae^(mx)+be^(-mx))dx=K tan^(-1)(Pe^(mx))+C

int(1)/((e^(-mx))^(2))dx=

int(1)/((1+e^(mx))(1+e^(-mx)))dx=

int a^(px)b^(mx)dx

int_(0)^(oo) e^(-mx) x^(7) dx is

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

Prove : int sin mx sin n x dx[ m^(2) != n^(2)] , = 1/2 [ (sin(m-n)x)/(m-n) - (sin (m+n)x)/(m+n) ] + c

Evaluate: int((m)/(x)+(x)/(m)+m^(x)+x^(m)+mx)dx( ii) int(sqrt(x)-(1)/(sqrt(x)))^(2)dx

1/(sin^2 (1 - mx))

If int((x^(2)+2))/((x^(2)+1)(x^(2)+4))dx=ktan^(-1)((mx)/(c-x^(2))) , then find the value of 3k+m+c.