Home
Class 10
MATHS
(tantheta)/(1-cottheta)+(cottheta)/(1-ta...

`(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+secthetac o s e ctheta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+secthetacos e ctheta

Prove the following identities,where the angles involved are acute angles for which the expressions are defined. (iii) (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+secthetacosectheta

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (iii) (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+sectheta cosectheta

Prove the following identities, where the angles involved are acute angles for which the expressions are defined. : (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+secthetacosectheta .

Prove that : (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+sectheta" cosec "theta

Prove that tantheta/(1-cottheta)+cottheta/(1-tantheta)=1+secthetacosectheta

tantheta /(1-cottheta ) + cottheta/(1-tan theta)= 1+sectheta*cosectheta

sintheta/(1-cottheta)+costheta/(1-tantheta)=

Prove the following identities. where the angles involved are acute angles for which the expressions are defined. (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+secthetacosectheta [ Hint: Write the expression in terms of sin theta and cos theta ]

Prove: (tantheta)/(1- cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta